The degree of commutativity of a finite group is the probability that two uniformly and randomly chosen elements commute. This notion extends naturally to finitely generated groups G: the degree of commutativity dcS(G)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\,\ extrm{dc}\\,}}_S(G)$$\\end{document}, with respect to a given finite generating set S, results from considering the fractions of commuting pairs of elements in increasing balls around 1G\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1_G$$\\end{document} in the Cayley graph . We focus on restricted wreath products of the form G=H≀⟨t⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G = H \\hspace{1.111pt}{\\wr }\\hspace{1.111pt}\\langle \\hspace{1.111pt}t \\rangle $$\\end{document}, where H≠1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H \ e 1$$\\end{document} is finitely generated and the top group ⟨t⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle \\hspace{1.111pt}t \\rangle $$\\end{document} is infinite cyclic. In accordance with a more general conjecture, we show that dcS(G)=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\,\ extrm{dc}\\,}}_S(G) = 0$$\\end{document} for such groups G, regardless of the choice of S. This extends results of Cox who considered lamplighter groups with respect to certain kinds of generating sets. We also derive a generalisation of Cox’s main auxiliary result: in ‘reasonably large’ homomorphic images of wreath products G as above, the image of the base group has density zero, with respect to certain types of generating sets.
Read full abstract