Clinical phenotypic presentations associated with LAMA2 deficiency have shown a variety of manifestations. LAMA2 mutations are mainly linked to congenital muscular dystrophy, but there is also mounting evidence suggesting their presence in inflammatory breast cancer, laryngopharyngeal squamous cell carcinoma, and ventricular tachycardia related to coronary artery disease and cardiomyopathy. This study examined the structural and functional impacts of 144 non-synonymous single nucleotide polymorphisms (nsSNPs) within the LAMA2 gene. Through multi-tiered sequence and structure-based methods, 11 deleterious and destabilizing mutations were identified (A1362T, E1308Q, E1360G, I1276S, L1195P, M1359T, P1232H, P1238A, P1272L, Y1234H, Y1338C). Further, four mutations (L1195P, Y1234H, P1238A, A1362T), which aligned with conserved positions, were subjected to 500 ns molecular dynamics (MD) simulations. RMSD calculated from MD trajectories highlighted structural disparities between wild-type and mutant forms, with the latter showing greater flexibility. Radius of gyration analysis indicated reduced compactness, solvent accessibility changes suggested unfolding, and hydrogen bond (HB) analysis demonstrated disrupted integrity. The HB analysis revealed disruptions in structural integrity due to diminished hydrogen bonds in mutants. Secondary structure analysis revealed significant alterations in secondary structural content. Principal Component Analysis unveiled increased dynamic behavior in mutants. Gibbs free energy landscape analysis reflected distinct energy minima regions in mutants, indicating structural destabilization. Overall, this study revealed the functional and structural ramifications of nsSNPs in the LAMA2 gene, providing valuable insights into potential disease-causing mutations and warranting future research on understanding LAMA2 associated diseases and disorders.
Read full abstract