The structure and properties of graphene oxide aerogels (GOA), prepared by a modified Hummer’s method followed by a freezing-drying process in addition to a pre-oxidized procedure, were studied through FTIR, Raman, SEM and XDR techniques. FTIR results indicated the existence of -C-O, -C-OH and -C=O function groups on the GOA surface. Therefore, the D band intensity of GOA sample exhibited remarkable increasing in the Raman spectra compared with of graphite; it may be due to change the order-structure of graphite to disorder-structure of GOA. The diffractive peak for the graphite at 2θ of 26.5° vanishes instead the one around 10.0° occurred in the XRD pattern for the GOA supported that the structure and d-spacing changed seriously from graphite to GOA. The SEM images revealed that the micro-structure of graphene layer of GOA was wrinkler and softer than that of graphite, however, the former involved fewer lamellar layer appearance with wrinkles on the edges of the graphene. All the characterized evaluation confirmed that the graphite powder has been transformed into a GOA structure through the modified Hummers’ method.