Potentials are constructed for the lambda-nucleon interaction in the and channels. These potentials are recovered from scattering phases below the inelastic threshold through Gel’fand-Levitan-Marchenko theory. Experimental data with good statistics is not available for lambda-nucleon scattering. This leaves theoretical scattering phases as the only option through which the rigorous theory of quantum inverse scattering can be used in probing the lambda-nucleon force. Using rational-function interpolations on the theoretical scattering data, the kernels of the Gel’fand-Levitan-Marchenko integral equation become degenerate, resulting in a closed-form solution. The new potentials restored, which are shown to be unique through the Levinson theorem, bear the expected features of short-range repulsion and intermediate-range attraction. Charge symmetry breaking, which is perceptible in the scattering phases, is preserved in the new potentials. The lambda-nucleon force in the channel is observed to be stronger than in the channel, as expected. In addition, the potentials bear certain distinctive features whose effects on hypernuclear systems can be explored through Schrödinger calculations.