On a model natural object, the Lake Baikal–Angara River–Irkutsk Reservoir (IR), we studied changes in the qualitative and quantitative characteristics of phytoplankton communities over three seasons in 2023 depending on seasonal changes in habitat parameters. Of the 151 identified taxa, Chrysophyta (57), Chlorophyta (41) and Bacillariophyta (24) predominated in diversity. Over the entire observation period, the highest values of total biomass and total abundance were detected in the IR in June (hydrological spring) at a water temperature of 10.0–12.7 °C, and the lowest in August, despite the fact that the water warmed up to 20 °C. No mass blooms of Cyanobacteria were observed. Statistical analysis of species abundance profiles revealed that phytoplankton community structure varied across time and space. The direct effect of cold lake waters on the structure of phytoplankton in the reservoir was observed only in early June. In summer and autumn, the structures of phytoplankton in the lake and in the reservoir differed, even at the same water temperature. Low concentrations of phosphates and nitrates, high species diversity, the presence of cold-water species and species with a wide range of temperature preferences formed a dynamic spatiotemporal structure of IR phytoplankton, distinct from other temperate reservoirs, including Lake Baikal. The results obtained are important for understanding the mechanisms of formation of the flora of artificial reservoirs of temperate latitudes and for their monitoring, taking into account seasonal dynamics and the context of global climate warming.
Read full abstract