A symmetry-breaking term with derivative coupling $\mathrm{Tr}[({a}^{\ensuremath{'}}+{b}^{\ensuremath{'}}{\ensuremath{\lambda}}_{8}+{c}^{\ensuremath{'}}{\ensuremath{\lambda}}_{3})M{\ensuremath{\partial}}_{\ensuremath{\mu}}M{\ensuremath{\partial}}_{\ensuremath{\mu}}{M}^{\ifmmode\dagger\else\textdagger\fi{}}+\mathrm{H}.\mathrm{c}.]$ originating from the $(3,\overline{3})+(\overline{3},3)$ quark mass term is added to the minimal nonlinear meson Lagrangian for a unified description of SU(3)\ifmmode\times\else\texttimes\fi{}SU(3) breaking. These effects arise from a rescaling of the meson fields which gives automatically the ${K}_{l3}$ Callan-Treiman relation. SU(3) breaking for $\frac{{f}_{K}}{{f}_{\ensuremath{\pi}}}$ and $\frac{{f}_{{\ensuremath{\eta}}_{8}}}{{f}_{\ensuremath{\pi}}}$ is understood to come from the current quark mass ${m}_{s}$. Using this result, we find $\ensuremath{\Gamma}(\ensuremath{\eta}\ensuremath{\rightarrow}2\ensuremath{\gamma})=289\ifmmode\pm\else\textpm\fi{}20$ eV for ${\ensuremath{\theta}}_{P}=10.5\ifmmode^\circ\else\textdegree\fi{}$, in good agreement with the measured value 324\ifmmode\pm\else\textpm\fi{}50 eV. It is also shown that the $K\ensuremath{\rightarrow}3\ensuremath{\pi}$ slope parameters and relative decay rates are unaffected by this symmetry breaking.
Read full abstract