The syntheses of atomically precise silver (Ag) clusters stabilized by multidentate lacunary polyoxometalate (POM) ligands have been emerging as a promising but challenging research direction, the combination of redox-active POM ligands and silver clusters will render them unexpected geometric structures and catalytic properties. Herein, we report the successful construction of two structurally-new lacunary POM-stabilized Ag clusters, TBA6 H14 Ag14 (DPPB)4 (CH3 CN)9 [Ag24 (Si2 W18 O66 )3 ] ⋅ 10CH3 CN ⋅ 9H2 O ({Ag24 (Si2 W18 O66 )3 }, TBA=tetra-n-butylammonium, DPPB=1,4-Bis(diphenylphosphino)butane) and TBA14 H6 Ag9 Na2 (H2 O)9 [Ag27 (Si2 W18 O66 )3 ] ⋅ 8CH3 CN ⋅ 10H2 O ({Ag27 (Si2 W18 O66 )3 }), using a facile one-pot solvothermal approach. Under otherwise identical synthetic conditions, the molecular structures of two POM-stabilized Ag clusters could be readily tuned by the addition of different organic ligands. In both compounds, the central trefoil-propeller-shaped {Ag24 }14+ and {Ag27 }17+ clusters bearing 10 delocalized valence electrons are stabilized by three C-shaped {Si2 W18 O66 } units. The femtosecond/nanosecond transient absorption spectroscopy revealed the rapid charge transfer between {Ag24 }14+ core and {Si2 W18 O66 } ligands. Both compounds have been pioneeringly investigated as catalysts for photocatalytic CO2 reduction to HCOOH with a high selectivity.
Read full abstract