To develop a new method that more closely represents the heavy-to-severe exercise domain boundary by evaluating the rates of blood lactate accumulation during the constant power output exercise bouts that are employed in the assessment of the maximal lactate steady state (MLSS). Eight well-trained male cyclists completed five exercise tests of up to 30 min for determination of the traditional MLSS (MLSSTRAD) and a further four maximal tests for determination of critical power (CP). The rates of change of blood [lactate] between 10 min and the end of exercise in the MLSS tests were plotted against the corresponding power outputs and a two-segment linear regression model was used to identify individualised breakpoints in lactate accumulation vs. power output (MLSSMOD). MLSSMOD was significantly higher than MLSSTRAD (297 ± 41 vs. 278 ± 41 W; P < 0.001) but was not significantly different from CP (297 ± 41 W; P > 0.05); MLSSMOD and CP were closely aligned (r: 0.97; Bias: -0.52 W; SEE: 10 W; Limits of Agreement: -20 to 19 W). The rates of change of both blood [lactate] and V̇O2 were significantly greater, and exercise intolerance occurred before 30 min, at a power output slightly above MLSSMOD. A novel method for evaluating blood lactate kinetics during a traditional MLSS protocol produces a modified MLSS that is not different from CP and better represents the heavy-to-severe exercise domain boundary.