This study investigated the potential of self-nanoemulsifying drug delivery systems (SNEDDS) to optimize the oral bioavailability of insulin. Insulin complexes with phospholipids and enzymatically-modified phospholipids were developed and incorporated into the SNEDDS using Lauroglycol FCC as the oily phase and Cremophor EL and Labrafil M1944CS as the surfactant and co-surfactant, respectively. Additionally, mucoadhesive polysaccharides (sodium alginate and guar gum) were added further to enhance the bioavailability of insulin in these systems. The objective was to increase the bioavailability and bioactivity of an insulin-modified phosphatidylcholine complex by incorporating mucoadhesives into the SNEDDS. After polymer inclusion, the resulting nanoemulsions exhibited droplet diameters ranging from 57 to 83 nm. Cytotoxicity and apparent permeability tests were conducted on Caco-2 and NIH 3 T3 cell lines, revealing that toxicity was related to the concentrations of insulin and surfactant in the nanosystems—formulations containing guar gum as a mucoadhesive showed better tolerance to cell death in the Caco-2 line. In a murine diabetes model, the SNEDDS were observed to reduce glucose levels by up to 61.63 %, with a relative bioavailability of 2.25 % compared to subcutaneously administered insulin. These results suggest that SNEDDS incorporating mucoadhesives could represent a promising strategy for improving oral insulin delivery.
Read full abstract