Promoting the advancement of the structure and function of metastable substances is challenging but worthwhile. In particular, how to harness the entangled state and evolution path of labile porous structures has been at the forefront of research in molecular self-assembly. In this work, the metastable structures of polyoxovanadate-based metal-organic polyhedra (VMOPs) can be manually regulated, including separation of the interlocked aggregate by a ligand-widening approach as well as transformation from a tetrahedral to capsule-like scaffold via a vertice-remodeling strategy. In these processes, intra- and intermolecular π···π and C-H···π interactions have been recognized as the primary driving forces. Besides being responsible for commanding the structural evolvement of VMOPs, such weak interactions were able to program their spatial arrangements and hence the adsorption performances for dye and iodine. The successful use of such a weak force-dominated design concept beacons a feasible route for customization of the function-oriented metastable structures. Separation and transformation of the interlocked metastable VMOPs have been achieved via the respective ligand-widening approach and vertice-remodeling strategy. Not only their structures but also adsorption features could be well regulated by such a weak force-dominated design concept.
Read full abstract