Physiological curvature changes of the lumbar spine and disc herniation can cause abnormal biomechanical responses of the lumbar spine. Finite element (FE) studies on special weightlifter models are limited, yet understanding stress in damaged lumbar spines is crucial for preventing and rehabilitating lumbar diseases. This study analyzes the biomechanical responses of a weightlifter with lumbar straightening and L4-L5 disc herniation during symmetric bending and lifting to optimize training and rehabilitation. Based on the weightlifter's computed tomography (CT) data, an FE lumbar spine model (L1-L5) was established. The model included normal intervertebral discs (IVDs), vertebral endplates, ligaments, and a degenerated L4-L5 disc. The bending angle was set to 45°, and weights of 15 kg, 20 kg, and 25 kg were used. The flexion moment for lifting these weights was theoretically calculated. The model was tilted at 45° in Abaqus 2021 (Dassault Systèmes Simulia Corp., Johnston, RI, USA), with L5 constrained in all six degrees of freedom. A vertical load equivalent to the weightlifter's body mass and the calculated flexion moments were applied to L1 to simulate the weightlifter's bending and lifting behavior. Biomechanical responses within the lumbar spine were then analyzed. The displacement and range of motion (ROM) of the lumbar spine were similar under all three loading conditions. The flexion degree increased with the load, while extension remained unchanged. Right-side movement and bending showed minimal change, with slightly more right rotation. Stress distribution trends were similar across loads, primarily concentrated in the vertebral body, increasing with load. Maximum stress occurred at the anterior inferior margin of L5, with significant stress at the posterior joints, ligaments, and spinous processes. The posterior L5 and margins of L1 and L5 experienced high stress. The degenerated L4-L5 IVD showed stress concentration on its edges, with significant stress also on L3-L4 IVD. Stress distribution in the lumbar spine was uneven. Our findings highlight the impact on spinal biomechanics and suggest reducing anisotropic loading and being cautious of loaded flexion positions affecting posterior joints, IVDs, and vertebrae. This study offers valuable insights for the rehabilitation and treatment of similar patients.