Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by the loss of dopaminergic neurons and the consequent decline in motor and cognitive functions. The primary therapeutic agent levodopa necessitates precise dosing due to its narrow therapeutic window and complex pharmacokinetics. This study presents the development of a novel CuCoFe-LDHzyme-based sweat sensor for real-time monitoring of levodopa concentration in PD patients. Employing differential pulse voltammetry (DPV) technique, the sensor demonstrates high sensitivity and selectivity, achieving a detection limit of 28.1 nM. The sensor's design allows for non-invasive, continuous monitoring, significantly enhancing patient convenience compared to traditional blood sampling methods. Through pH correction, precise quantification of levodopa in sweat is accomplished, and a strong correlation (Pearson coefficient = 0.833) with blood levodopa levels is established. The pharmacokinetic profile of levodopa is reconstructed in real-time, offering a promising tool for optimizing PD treatment regimens. This study highlights the potential of CuCoFe-LDHzyme sensors to advance personalized treatment strategies, aiming to improve the quality of life for PD patients by providing clinicians with real-time data for medication adjustments.
Read full abstract