Circuitry and chemistry are applied in such fields as communication engineering and automatic control, environmental protection and material/medicine sciences, respectively. Biology works as the basis of agriculture and medicine. Studied in this paper is a nonlinear space-fractional Kolmogorov–Petrovskii–Piskunov equation for the electronic circuitry, chemical kinetics, population dynamics, neurophysiology, population genetics, mutant gene propagation, nerve impulses transmission or molecular crossbridge property in living muscles. Kink soliton solutions are obtained via the fractional sub-equation method. Change of the fractional order does not affect the amplitudes of the kink solitons. Via the traveling transformation, the original equation is transformed into the ordinary differential equation, while we obtain two equivalent two-dimensional planar dynamic systems of that ordinary differential equation. According to the bifurcation and qualitative considerations of the planar dynamic systems, we display the corresponding phase portraits when the traveling-wave velocity is nonzero or zero. Nonlinear periodic waves of the original equation are obtained when the traveling-wave velocity is zero.
Read full abstract