Tissue engineering presents a promising approach for the treatment of meniscal injuries, yet the development of meniscal scaffolds that exhibit both superior biomechanical properties and biocompatibility remains a considerable challenge. In this study, decellularized skin matrix (DSM) scaffolds were first prepared using porcine skin through decellularization and freeze-drying techniques. The DSM scaffold has favorable porosity, hydrophilicity, and biocompatibility. Importantly, the collagen content and tensile modulus of the scaffold are comparable to those of native meniscus (44.13 ± 2.396 mg/g vs. 42.41 ± 2.40 mg/g and 103.30 ± 2.98 MPa vs. 128.80 ± 9.115 MPa). Subsequently, the peptide PFSSTKT (PFS) with mesenchymal stem cells (MSCs) recruitment capability was used to modify DSM to construct DSM-PFS scaffolds. Compared to the DSM scaffold, the optimized DSM-PFS scaffold enhanced in vitro collagen and glycosaminoglycan (GAG) production and upregulated the expression of cartilage-specific genes. Furthermore, the DSM-PFS scaffold was more effective in recruiting MSCs in vitro. In vivo studies in rabbit models showed that the DSM-PFS scaffold successfully promoted meniscus tissue regeneration. Three months post-implantation, meniscus tissue formation can be observable, and after six months, the neo-meniscus exhibited tissue structure and tensile properties similar to the native meniscus. Notably, the DSM-PFS scaffold exhibited significant chondroprotective effects, slowing osteoarthritis (OA) progression. In conclusion, the DSM-PFS scaffold may represent a promising candidate for future applications in meniscus tissue engineering. Statement of significanceWe developed a decellularized skin matrix (DSM) meniscus scaffold using whole-layer porcine skin, demonstrating superior biomechanical strength and biocompatibility. Following modification with the stem cell-recruiting peptide PFS, the optimized DSM-PFS scaffold outperformed the DSM scaffold in cell attraction, collagen and glycosaminoglycan production, and cartilage-specific gene expression. Implanted into rabbit knee joints, the cell-free DSM-PFS scaffold induced meniscal tissue formation within three months, achieving the histological structure and tensile strength of the native meniscus by six months. Moreover, it significantly protected the cartilage. Our findings provide new insights into the fabrication of scaffolds for meniscal tissue engineering, with the DSM-PFS scaffold emerging as an ideal candidate for future applications.