Anisotropy in the lowermost few 100 km of mantle, or D″ region, is indicative of deformation-induced alignment of crystals and/or inclusions of material, and as such offers insights into the dynamic nature of this region. Observations of shear-wave splitting in phases that transit this region provide constraints on such anisotropy. We investigate the effects of lower-mantle seismic anisotropy on SKS and SKKS phases through linked effective-medium modelling and ray-based waveform modelling. A mantle with vertical-transverse-isotropy (VTI) will not produce any splitting in such core phases. Instead we consider the effects of azimuthal-anisotropy due to aligned disk-shaped and tubular inclusions and aligned perovskite, periclase and columbite. Models are constructed subject to constraints imposed by observed anisotropy (<3%) and plausible variations in aggregate isotropic velocities (<± 2.5%). Melt-filled inclusions are much more effective in generating anisotropy than solid-filled inclusions and disk-shaped inclusions produce more anisotropy than tubular inclusions. In general the degree of splitting produced by most of the models is small, similar to that produced by the crust (<0.5 s). The exceptions are melt-filled vertically-aligned disk-shaped inclusions and horizontally aligned periclase, the former most likely in low-velocity regions, the latter in high-velocity regions. Both models produce splitting significant enough to mask the effects of upper-mantle anisotropy. Strong azimuthal variations in splitting and discrepancies in SKS and SKKS splitting are diagnostic of these anisotropic models.
Read full abstract