PurposeIn developed countries, endometrial cancer (EC) is the most prevalent gynecological cancer and its occurrence is associated with chronic inflammation. ATP5F1D is a subunit of ATP synthase (complex V), as well as the important component of mitochondrial electron transport chain (ETC). ETC play compelling roles in carcinogenesis. To date, little is known about the role of ATP5F1D in EC. MethodsATP5F1D expression was identified in EC tissues and EC cell lines. We evaluated the influence of ATP5F1D on clinical features and prognosis based on TCGA database. The effects of ATP5F1D in EC malignant progression by applying loss-of-function assays in KLE and Ishikawa cell lines were detected by EdU, CCK-8, wound healing, Transwell, and flow cytometry assays. Additionally, electron microscope, LDH release, ELISA, mitochondrial ROS measurement, and Immunofluorescence were performed to demonstrate ATP5F1D can affect the pyroptosis of EC. To observe the anti-tumor effect on ATP5F1D silencing, we established an in vivo human endometrial tumor model using nude mice. ResultsATP5F1D expression was significantly upregulated in EC and was associated with favorable prognosis. ATP5F1D knockdown inhibited the proliferation, invasion, and migration of EC cells. Similarly, in nude mice, ATP5F1D knockdown suppressed the growth EC cells. Knocking down ATP5F1D lead to decrease the production of mitochondrial ROS (mtROS) and inhibited pyroptosis of EC cells. ConclusionDownregulation of ATP5F1D as a new therapeutic strategy that could mediate pyroptosis via suppressing mtROS/NLRP3/caspase-1/GSDMD pathway to inhibit EC progression.
Read full abstract