The Neumann Schrodinger operator \( \mathcal{L} \) is considered on a thin 2D star-shaped junction, composed of a vertex domain Ωint and a few semi-infinite straight leads ωm, m = 1, 2, ..., M, of width δ, δ ≪ diam Ωint, attached to Ωint at Γ ⊂ ∂Ωint. The potential of the Schrodinger operator lω on the leads vanishes, hence there are only a finite number of eigenvalues of the Neumann Schrodinger operator Lint on Ωint embedded into the open spectral branches of lω with oscillating solutions χ±(x, p) = \( e^{ \pm iK_ + x} e_m \) of lωχ± = p2χ±. The exponent of the open channels in the wires is $$ K_ + (\lambda ) = p\sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = \sqrt \lambda P_ + $$ , with constant em, on a relatively small essential spectral interval Δ ⊂ [0, π2δ−2). The scattering matrix of the junction is represented on Δ in terms of the ND mapping $$ \mathcal{N} = \frac{{\partial P_ + \Psi }} {{\partial x}}(0,\lambda )\left| {_\Gamma \to P_ + \Psi _ + (0,\lambda )} \right|_\Gamma $$ as $$ S(\lambda ) = (ip\mathcal{N} + I_ + )^{ - 1} (ip\mathcal{N} - I_ + ), I_ + = \sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = P_ + $$ . We derive an approximate formula for \( \mathcal{N} \) in terms of the Neumann-to-Dirichlet mapping \( \mathcal{N}_{\operatorname{int} } \) of Lint and the exponent K− of the closed channels of lω. If there is only one simple eigenvalue λ0 ∈ Δ, Lintφ0 = λ0φ0 then, for a thin junction, \( \mathcal{N} \approx |\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} \) with $$ \vec \phi _0 = P_ + \phi _0 = (\delta ^{ - 1} \int_{\Gamma _1 } {\phi _0 (\gamma )} d\gamma ,\delta ^{ - 1} \int_{\Gamma _2 } {\phi _0 (\gamma )} d\gamma , \ldots \delta ^{ - 1} \int_{\Gamma _M } {\phi _0 (\gamma )} d\gamma ) $$ and \( P_0 = \vec \phi _0 \rangle |\vec \phi _0 |^{ - 2} \langle \vec \phi _0 \), $$ S(\lambda ) \approx \frac{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} - I_ + }} {{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} + I_ + }} = :S_{appr} (\lambda ) $$ . The related boundary condition for the components P+Ψ(0) and P+Ψ′(0) of the scattering Ansatz in the open channel \( P_ + \Psi (0) = (\bar \Psi _1 ,\bar \Psi _2 , \ldots ,\bar \Psi _M ), P_ + \Psi '(0) = (\bar \Psi '_1 , \bar \Psi '_2 , \ldots , \bar \Psi '_M ) \) includes the weighted continuity (1) of the scattering Ansatz Ψ at the vertex and the weighted balance of the currents (2), where $$ \frac{{\bar \Psi _m }} {{\bar \phi _0^m }} = \frac{{\delta \sum\nolimits_{t = 1}^M { \bar \Psi _t \bar \phi _0^t } }} {{|\vec \phi _0 |^2 }} = \frac{{\bar \Psi _r }} {{\bar \phi _0^r }} = :\bar \Psi (0)/\bar \phi (0), 1 \leqslant m,r \leqslant M $$ (1) , $$ \sum\limits_{m = 1}^M {\bar \Psi '_m } \bar \phi _0^m + \delta ^{ - 1} (\lambda - \lambda _0 )\bar \Psi /\bar \phi (0) = 0 $$ (1) . Conditions (1) and (2) constitute the generalized Kirchhoff boundary condition at the vertex for the Schrodinger operator on a thin junction and remain valid for the corresponding 1D model. We compare this with the previous result by Kuchment and Zeng obtained by the variational technique for the Neumann Laplacian on a shrinking quantum network.