In this paper, we consider the existence of a normalized ground-state solution for the Choquard–Kirchhoff equation: {−(a+b∫R3|∇u|2dx)Δu=λu+μ(Iα∗|u|p)|u|p−2u+ω|u|4u,inR3,u>0,∫R3|u|2=m2,inR3,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left \\{ \ extstyle\\begin{array}{l@{\\quad}r} -(a+b\\int _{\\mathbb{R}^{3}}|\ abla u|^{2}dx)\\Delta{u}=\\lambda u+\\mu (I_{ \\alpha}\\ast |u|^{p})|u|^{p-2}u+\\omega |u|^{4}u,\\ \\ &\ ext{in}\\, \\mathbb{R}^{3}, \\\\ u>0,\\quad \\int _{\\mathbb{R}^{3}}|u|^{2}=m^{2},\\,&\ ext{in}\\, \\mathbb{R}^{3}, \\end{array}\\displaystyle \\right . $$\\end{document} where a, b, m, μ, ω>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\omega >0$\\end{document}, p∈(2,7+α3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$p\\in (2,\\frac{7+\\alpha}{3})$\\end{document}, λ∈R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda \\in \\mathbb{R}$\\end{document}, α∈(0,3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha \\in (0,3)$\\end{document}, and Iα\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$I_{\\alpha}$\\end{document} is a Riesz potential. Utilizing approximation methods and Schwartz symmetrization rearrangements, we establish the existence of normalized ground states for these kinds of mass-constrained Choquard–Kirchhoff problems.