This paper presents a study of the kinetics of catalytic hydrogenation of nitrobenzene to aniline in the presence of Ni-containing catalysts based on super-crosslinked polystyrene. Aniline hydrogenation is a complex multi-stage process accompanied by the formation of a large number of both intermediate and by-products, including azobenzene, azoxybenzene, nitrosobenzene, phenylhydroxylamine and other substances. Therefor the study of the process kinetics is an important scientific and technical task necessary to increase the yield of the target product — aniline. The hydrogenation reaction of nitrobenzene was carried out in a six-cell high-pressure reactor Parr instruments, Series 5000. The products were analyzed by chromatography using a gas chromatograph Kristallux-4000M (Russia, Meta–Chrom). The effect of temperature, pressure, and concentration of the catalyst was studied; optimal reaction conditions were selected that ensure the maximum yield of aniline. Investigation of the effect of the nitrobenzene initial concentration on the rate of its transformation shows that increase of catalyst to nitrobenzene ratio from 0.2 to 0.6 kg (Cat)/kg (NB) leads to a linear increase in the rate of transformation of nitrobenzene from 0.0002 kg (NB) / (kg (Cat)*s ) to 0.0028 kg(NB)/(kg(Cat)*s), a further increase in the ratio of catalyst concentration to nitrobenzene concentration to 1.2 kg (Cat)/kg(NB) leads to stabilization of the nitrobenzene transformation rate at the level of 0.003 kg(NB)/(kg(Cat)*s). An increase in the temperature of the reaction from 90 to 160 °C contributes to a significant increase in the nitrobenzene transformation rate. The constructed dependences made it possible to calculate the apparent activation energy of the process, which amounted to be 50.4 kJ/mol and the preexponential factor, which amounted to be 15821.1 1/s. The applicability of the Langmuir–Henschelwood model to describe the basic kinetic laws of the reaction of catalytic nitrobenzene hydrogenation with the formation of aniline is studied. Numerical methods in the Matlab software allows to determine the values of preexponential factors and activation energies of the nitrobenzene hydrogenation processes, adsorption of nitrobenzene and adsorption of hydrogen, which made it possible to establish the optimal area of nitrobenzene hydrogenation process of hydrogenation of Pн2 = 15–18 atm, C(NB) = 1.2 kg(NB)/kg(Cat), t =115–120 °C providing maximum speed.