Ridge tillage (RT) is a conservation practice that provides several benefits such as enhanced root growth and reduced soil erosion. The objectives of this study were to develop an autosteered living mulch seeder and hoeing prototype for RT systems using RTK-GNSS (real-time kinematic global navigation satellite systems) created ridges as a guide. It was also aimed to compare weed control efficacy and crop response of ridge-hoeing compared to conventional hoeing in flat tillage (FT). It was further aimed to investigate the impact of a new RT technology (with ridge re-compaction) on maize root development, yield, soil temperature, and moisture compared to FT.Field experiments were conducted with maize in 2021 and 2022 in a two-factorial split-plot design with tillage (RT and FT) as main treatment and weed control (untreated, herbicide, twice hoeing, hoeing + living mulch) as sub-treatment factors. Weed density, coverage, biomass, crop density, weed control efficacy (WCE) and maize silage yield were assessed. Temperature loggers were installed within RT and FT to take temperature readings at 20 min. Soil moisture and root penetrability were measured every two weeks in each plot using soil samples and a penetrometer.The WCE and yield did not differ significantly between the tillage systems. Twice hoeing resulted in 71–80 % WCE, which was equal to herbicide treatment. Hoeing + living mulch achieved 70–72 % WCE. Different from previous studies with ridge tillage, temperatures in the compacted ridges did not consistently differ from the ridge valleys and flat seedbeds. Root penetration (against 1.4 MPa penetrometer cone index) was 40 % higher in RT than in FT. On average, RT maize produced more (53.6 g m−2) root biomass compared to FT. In summary, re-compacted ridges built along RTK-GNSS lines can allow post-emergent hoeing and living mulch seeding along ridges and also provide good growing conditions for maize.
Read full abstract