A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(μ3-OH)36(μ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(μ3-OH)36(μ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.
Read full abstract