Geometry and topology have generated impacts far beyond their pure mathematical primitive, providing a solid foundation for many applicable tools. Typically, real-world data are represented as vectors, forming a linear subspace for a given data collection. Computing distances between different subspaces is generally a computationally challenging problem with both theoretical and applicable consequences, as, for example, the results can be used to classify data from different categories. Fueled by the fast-growing development of quantum algorithms, we consider such problems in the quantum context and provide a quantum algorithm for estimating two kinds of distance: Grassmann distance and ellipsoid distance. Under appropriate assumptions and conditions, the speedup of our quantum algorithm is exponential with respect to both the dimension of the given data and the number of data points. Some extensions regarding estimating different kinds of distance are then discussed as a corollary of our main quantum algorithmic method.
Read full abstract