In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK−2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO. Inhibition of efflux transporters did not affect the cytotoxicity of CPF and CPFO in HK-2 cells. Co-incubation of CPF with P-gp and BCRP inhibitors increased the intracellular concentration of CPF in HepG2 cells suggesting that both transporters play a role in limiting the cellular accumulation of CPF in HepG2 cells. Our results provide evidence that inhibition of efflux transporters can enhance CPF-induced toxicity through enhanced cellular accumulation and raises additional questions regarding how pesticide-transporter interactions may influence toxicity of mixtures containing pesticides and other environmental chemicals.