Radially symmetric global unbounded solutions of the chemotaxis system {ut=∇⋅(D(u)∇u)−∇⋅(uS(u)∇v),0=Δv−μ+u,μ=1|Ω|∫Ωu,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left\\{ {\\matrix{{{u_t} = \ abla \\cdot (D(u)\ abla u) - \ abla \\cdot (uS(u)\ abla v),} \\hfill & {} \\hfill \\cr {0 = \\Delta v - \\mu + u,} \\hfill & {\\mu = {1 \\over {|\\Omega |}}\\int_\\Omega {u,} } \\hfill \\cr } } \\right.$$\\end{document} are considered in a ball Ω = BR(0) ⊂ ℝn, where n ≥ 3 and R > 0.Under the assumption that D and S suitably generalize the prototypes given by D(ξ) = (ξ + ι)m−1 and S(ξ) = (ξ + 1)−λ−1 for all ξ > 0 and some m ∈ ℝ, λ >0 and ι ≥ 0 fulfilling m+λ<1−2n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m + \\lambda < 1 - {2 \\over n}$$\\end{document}, a considerably large set of initial data u0 is found to enforce a complete mass aggregation in infinite time in the sense that for any such u0, an associated Neumann type initial-boundary value problem admits a global classical solution (u, v) satisfying 1C⋅(t+1)1λ≤||u(⋅,t)||L∞(Ω)≤C⋅(t+1)1λforallt>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${1 \\over C} \\cdot {(t + 1)^{{1 \\over \\lambda }}} \\le ||u( \\cdot ,t)|{|_{{L^\\infty }(\\Omega )}} \\le C \\cdot {(t + 1)^{{1 \\over \\lambda }}}\\,\\,\\,{\\rm{for}}\\,\\,{\\rm{all}}\\,\\,t > 0$$\\end{document} as well as ||u(⋅,t)||L1(Ω\\Br0(0))→0ast→∞for allr0∈(0,R)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$||u( \\cdot \\,,t)|{|_{{L^1}(\\Omega \\backslash {B_{{r_0}}}(0))}} \ o 0\\,\\,\\,{\\rm{as}}\\,\\,t \ o \\infty \\,\\,\\,{\\rm{for}}\\,\\,{\\rm{all}}\\,\\,{r_0} \\in (0,R)$$\\end{document} with some C > 0.
Read full abstract