Kaolinite is able to assure the high binding affinity of the filler particles of raw ceramic bodies. It acts as a matrix that strongly holds the other constituents’ particles in a compact structure. The slurry samples were characterized by XRD, mineralogical microscopy and SEM coupled with an EDX elemental analysis. The slurry collected from the ceramic tile production wastewaters had a significant amount of kaolinite (36%), mostly fine particles of 3 µm, less surrounding quartz (37%) and mullite (19%) particles of 5–100 µm in diameter and traces of lepidocrocite (8%). It is a dense paste with a relative moisture of 25%. The square bar of the slurry as received, pressed at a load of 350 N, had a flexural strength of 0.61 MPa. Increasing the moisture to 33% using regular water, followed by mechanical attrition at 2000 rpm for 5 min, resulted in a porous bar with a flexural strength of 0.09 MPa; by increasing the attrition speed to 6000 rpm, the microstructural homogenization was improved and the flexural strength was about 0.68 MPa. It seems that regular water does not assure an optimal moisture for the kaolinite matrix conditioning. Therefore, we used technological water at pH = 10, a moisture of 33% and attrition at 6000 rpm for 5 min, and the bar pressed at a load of 350 N had a flexural strength of 1.17 MPa. The results demonstrate that the bar moistened with technological water and an attrition regime assured a proper conditioning for the kaolinite matrix, achieving the optimal binding of the quartz and mullite particles under the pressing load. Bars with the optimal mixture were pressed at several loads, including 70, 140, 210 and 350 N, and the flexural strength was progressively increased from 0.56 MPa to 1.17 MPa. SEM fractography coupled with atomic force microscopy (AFM) revealed that the optimal moisture facilitated a proper kaolinite particle disposal regarding the quartz and mullite filler particles, and the progressive load assured the strong binding of the finest kaolinite platelets onto their surface.