Recent research has suggested that category theory can provide useful insights into the field of machine learning (ML). One example is improving the connection between an ML problem and the design of a corresponding ML algorithm. A tool from category theory called a Kan extension is used to derive the design of an unsupervised anomaly detection algorithm for a commonly used benchmark, the Occupancy dataset. Achieving an accuracy of 93.5% and an ROCAUC of 0.98, the performance of this algorithm is compared to state-of-the-art anomaly detection algorithms tested on the Occupancy dataset. These initial results demonstrate that category theory can offer new perspectives with which to attack problems, particularly in making more direct connections between the solutions and the problem’s structure.
Read full abstract