This study challenges strictly guaranteeing ``dissipativity'' of a dynamical system represented by neural networks learned from given time-series data. Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability, known to be valid across various systems including robotics, biological systems, and molecular dynamics. By analytically proving the general solution to the nonlinear Kalman–Yakubovich–Popov (KYP) lemma, which is the necessary and sufficient condition for dissipativity, we propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones and a learning method for the transformed dynamics. Utilizing the generality of dissipativity, our method strictly guarantee stability, input-output stability, and energy conservation of trained dynamical systems. Finally, we demonstrate the robustness of our method against out-of-domain input through applications to robotic arms and fluid dynamics.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
199 Articles
Published in last 50 years
Articles published on Kalman Yakubovich Popov
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
199 Search results
Sort by Recency