Precise modeling and state of charge (SoC) estimation of a lithium-ion battery (LIB) are crucial for the safety and longevity of battery systems in electric vehicles. Traditional methods often fail to adapt to the dynamic, nonlinear, and time-varying behavior of LIBs under different operating conditions. In this paper, an advanced joint estimation approach of the model parameters and SoC is proposed utilizing an enhanced Sigma Point Kalman Filter (SPKF). Based on the second-order equivalent circuit model (2RC-ECM), the proposed approach was compared to the two most widely used methods for simultaneously estimating the model parameters and SoC, including a hybrid recursive least square (RLS)-extended Kalman filter (EKF) method, and simple joint SPKF. The proposed adaptive joint SPKF (ASPKF) method addresses the limitations of both the RLS+EKF and simple joint SPKF, especially under dynamic operating conditions. By dynamically adjusting to changes in the battery’s characteristics, the method significantly enhances model accuracy and performance. The results demonstrate the robustness, computational efficiency, and reliability of the proposed ASPKF approach compared to traditional methods, making it an ideal solution for battery management systems (BMS) in modern EVs.
Read full abstract