The creation of artificial gauge fields in neutral ultracold atom systems has opened the possibility to study the effects of spin-orbit coupling terms in clean environments. This work considers the multi-channel scattering properties of two atoms confined by a wave guide in the presence of spin-orbit coupling terms within a K-matrix scattering framework. The tunability of resonances, induced by the interplay of the external wave guide geometry, the interactions, and the spin-orbit coupling terms, is demonstrated. Our results for the K-matrix elements as well as partial and total reflection coefficients for two identical fermions interacting through a finite-range interaction potential in the singlet channel only are compared with those obtained for a strictly one-dimensional effective low- energy Hamiltonian, which uses the effective coupling constant derived in Zhang et al. [Scientific Reports 4, 1 (2014)] and Zhang et al. [Phys. Rev. A 88, 053605 (2013)] as input. In the regime where the effective Hamiltonian is applicable, good agreement is obtained, provided the energy- dependence of the coupling constant is accounted for. Our approach naturally describes the energy regime in which the bands associated with excited transverse modes lie below a subset of the bands associated with the lowest transverse modes. The threshold behavior is discussed and scattering observables are linked to bound state properties.
Read full abstract