In disaster-stricken areas that were severely damaged by earthquakes, typhoons, floods, mudslides, and the like, employing unmanned aerial vehicles (UAVs) as airborne base stations for mobile edge computing (MEC) constitutes an effective solution. Concerning this, we investigate a 3D air–ground collaborative MEC scenario facilitated by multi-UAV for multiple ground devices (GDs). Specifically, we first design a 3D multi-UAV-assisted air–ground cooperative MEC system, and construct system communication, computation, and UAV flight energy consumption models. Subsequently, a cooperative resource optimization (CRO) problem is proposed by jointly optimizing task offloading, UAV flight trajectories, and edge computing resource allocation to minimize the total energy consumption of the system. Further, the CRO problem is decoupled into two sub-problems. Among them, the MATD3 deep reinforcement learning algorithm is utilized to jointly optimize the offloading decisions of GDs and the flight trajectories of UAVs; subsequently, the optimal resource allocation scheme at the edge is demonstrated through the derivation of KKT conditions. Finally, the simulation results show that the algorithm has good convergence compared with other algorithms and can effectively reduce the system energy consumption.
Read full abstract