Standing yoga poses strengthen a person’s legs and helps to achieve the goal of musculoskeletal rehabilitation, but inadequate exercise planning can cause injuries. This study investigated changes in the electromyogram and joint moments of force (JMOFs) of lower extremities during common standing yoga poses in order to explore the feasibility and possible injury risk in dealing with musculoskeletal problems. Eleven yoga instructors were recruited to execute five yoga poses (Chair, Tree, Warrior 1, 2, and 3). The results revealed significant differences in hip, knee, and ankle JMOFs and varying degrees of muscle activation among the poses. Among these poses, rectus femoris muscle activation during the Chair pose was the highest, Warrior 2 produced the highest muscle activation in the vastus lateralis of the front limb, while Warrior 1 had the highest muscle activation in the vastus medialis of the back limb. Therefore, all three poses can possibly be suggested as a therapeutic intervention for quadriceps strengthening. Warrior 1 was possibly suggested as a therapeutic intervention in order to reduce excessive lateral overload of the patella, but the possible adverse effects of Warrior 2 with the highest knee adductor JMOF in the back limb could raise joint reaction forces across the medial condyles. In single-leg balance postures, Warrior 3 had unique training effects on the hamstring, and is therefore suggested as a part of hamstring rehabilitation exercises. The Tree pose induced low lower-extremity JMOFs and a low level of thigh muscle activations when it was performed by senior instructors with excellent balance control; however, for yoga beginners with insufficient stability, it will be a useful training mode for strengthening the muscles that help to keep one upright. This study quantified the physical demands of yoga poses using biomechanical data and elucidated the structures and principles underlying each yoga movement. This is crucial for yoga practitioners.