The non-reacting and reacting jets-in-crossflow (JICF) are important flow configurations for effective mixing and combustion in practical applications. Many studies in the literature examine the overall mixing characteristics of isothermal, unconfined, non-reacting JICF. This experimental study expands on our recently published work that examined mixing characteristics in the near-field of a non-reacting jet in a hot vitiated crossflow (1500 K) for the jet-to-crossflow density ratio between 3.2 and 7.8 issuing from a round jet with a fully developed turbulent pipe flow exit profile. In this study, effects of the changing jet exit velocity profile to top-hat as well as exit turbulence levels (28% and 40%) with parabolic profiles are examined. Temperature measurements were made using laser Rayleigh scattering. The jet trajectory, centerline concentration decay based on adiabatic mixing assumption, Favre-averaged scalar dissipation, and mixing time scales were compared with the previous study results. Center-plane mixing metrics indicated that top-hat and pipe flow jets behave similarly, with better near-field mixing at lower momentum flux ratios and higher density ratios. The elevated turbulence cases have a higher near-field mixing efficiency with rates that are nearly independent of momentum flux ratios above 9.3 at a constant density ratio. Scalar dissipation analysis showed that the elevated turbulence jets differ from the nominal turbulence top-hat and pipe exit jet cases with a lack of strong peaks and slightly higher upstream crossflow magnitudes. Reducing the density ratio resulted in a decrease in the windward and leeward dissipation region size and magnitude.