Attaining sufficient microsurgical skills is paramount for neurosurgical trainees. Kinematic analysis of surgical instruments using video offers the potential for an objective assessment of microsurgical proficiency, thereby enhancing surgical training and patient safety. The purposes of this study were to develop a deep-learning-based automated instrument tip-detection algorithm, and to validate its performance in microvascular anastomosis training. An automated instrument tip-tracking algorithm was developed and trained using YOLOv2, based on clinical microsurgical videos and microvascular anastomosis practice videos. With this model, we measured motion economy (procedural time and path distance) and motion smoothness (normalized jerk index) during the task of suturing artificial blood vessels for end-to-side anastomosis. These parameters were validated using traditional criteria-based rating scales and were compared across surgeons with varying microsurgical experience (novice, intermediate, and expert). The suturing task was deconstructed into four distinct phases, and parameters within each phase were compared between novice and expert surgeons. The high accuracy of the developed model was indicated by a mean Dice similarity coefficient of 0.87. Deep learning-based parameters (procedural time, path distance, and normalized jerk index) exhibited correlations with traditional criteria-based rating scales and surgeons' years of experience. Experts completed the suturing task faster than novices. The total path distance for the right (dominant) side instrument movement was shorter for experts compared to novices. However, for the left (non-dominant) side, differences between the two groups were observed only in specific phases. The normalized jerk index for both the right and left sides was significantly lower in the expert than in the novice groups, and receiver operating characteristic analysis showed strong discriminative ability. The deep learning-based kinematic analytic approach for surgical instruments proves beneficial in assessing performance in microvascular anastomosis. Moreover, this methodology can be adapted for use in clinical settings.
Read full abstract