Constructing J-aggregated organic dyes represents a promising strategy for obtaining biomedical second near-infrared (NIR-II) emissive materials, as they exhibit red-shifted spectroscopic properties upon assembly into nanoparticles (NPs) in aqueous environments. However, currently available NIR-II J-aggregates primarily rely on specific molecular backbones with intricate design strategies and are susceptible to fluorescence quenching during assembly. A facile approach for constructing bright NIR-II J-aggregates using prevalent donor-acceptor (D-A) molecules is still lacking. In this study, we present a facile method that transforms D-A molecules into J-aggregates by simply bending the molecule through introducing a methyl group, enabling high-performance NIR-II phototheranostics. The TAA-BT-CN molecule exhibits hypsochromic-shift absorption upon forming H-aggregated NPs, while the designed mTAA-BT-CN with a bent structure demonstrates a bathochromic shift of over 100 nm in absorption upon forming J-aggregated NPs, leading to much enhanced NIR-II emission beyond 1100 nm. With respect to its H-aggregated counterpart with the aggregation-caused quenching (ACQ) phenomenon, the J-aggregated mTAA-BT-CN NPs exhibit a 7-fold increase in NIR-II fluorescence owing to their aggregation-induced emission (AIE) property as well as efficient generation of heat and reactive oxygen species under 808 nm light excitation. Finally, the mTAA-BT-CN NPs are employed for whole-body blood vessel imaging using NIR-II technology as well as imaging-guided tumor phototherapies. This study will facilitate the flourishing advancement of J-aggregates based on prevalent D-A-type molecules.