Von Neumann architecture requires information to be encoded as numerical values. For that reason, artificial neural networks running on computers require the data coming from sensors to be discretized. Other network architectures that more closely mimic biological neural networks (e.g., spiking neural networks) can be simulated on von Neumann architecture, but more important, they can also be executed on dedicated electrical circuits having orders of magnitude less power consumption. Unfortunately, input signal conditioning and encoding are usually not supported by such circuits, so a separate module consisting of an analog-to-digital converter, encoder, and transmitter is required. The aim of this article is to propose a sensor architecture, the output signal of which can be directly connected to the input of a spiking neural network. We demonstrate that the output signal is a valid spike source for the Izhikevich model neurons, ensuring the proper operation of a number of neurocomputational features. The advantages are clear: much lower power consumption, smaller area, and a less complex electronic circuit. The main disadvantage is that sensor characteristics somehow limit the parameters of applicable spiking neurons. The proposed architecture is illustrated by a case study involving a capacitive pressure sensor circuit, which is compatible with most of the neurocomputational properties of the Izhikevich neuron model. The sensor itself is characterized by very low power consumption: it draws only 3.49 μA at 3.3 V.
Read full abstract