The crystallization behavior of CaSiO3 in different CaO–Al2O3–SiO2 melts was comprehensively investigated in-situ with a confocal scanning laser microscope (CSLM) over a wide range of temperatures. The observations clearly indicate a transition from a faceted to dendritic crystal morphology with decreasing temperature. The undercooling required for dendritic growth increases with decreasing Al2O3 (under same basicity) and increasing basicity. The dendrite structure becomes finer at higher growth rates with a lower Al2O3 and higher basicity. The growth rates of different dendrites are time-independent. With increasing temperature, the growth rate first increases and then decreases. The observed dendrite tip radii are compared with those obtained from Ivantsov theory in 2D and 3D. With decreasing temperature, the growth conditions in the CSLM experiments appeared to shift from 3D (with the dendrite tip below the surface melt) close to 2D (with the dendrite tip on top of the surface melt).