Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare's serum gonadotropin (Folligon® PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (n = 150) from the control group were incubated for 4 days. The experimental zygotes (n = 150) were exposed to a cell phone emitting EMR with a frequency range 900-1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (P < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (P < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (P < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (P < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.
Read full abstract