This study aimed to assess the fermentation characteristics, bacterial community structure, co-occurrence networks, and their predicted functionality and pathogenic risk in high-moisture Italian ryegrass (IR; Lolium multiflorum Lam.) silage. The IR harvested at heading stage (208 g dry matter (DM)/kg fresh weight) was spontaneously ensiled in plastic silos (10 L scale). Triplicated silos were opened after 1, 3, 7, 15, 30, and 60 days of fermentation, respectively. The bacterial community structure on days 3 and 60 were investigated using high-throughput sequencing technology, and 16S rRNA-gene predicted functionality and phenotypes were determined by PICRUSt2 and BugBase tools, respectively. After 60 days, the IR silage exhibited good ensiling characteristics indicated by large amounts of acetic acid (~58.7 g/kg DM) and lactic acid (~91.5 g/kg DM), relatively low pH (~4.20), acceptable levels of ammonia nitrogen (~87.0 g/kg total nitrogen), and trace amounts of butyric acid (~1.59 g/kg DM). Psychrobacter was prevalent in fresh IR, and Lactobacillus became the most predominant genus after 3 and 60 days. The ensilage process reduced the complexity of the bacterial community networks in IR silage. The bacterial functional pathways in fresh and ensilaged IR are primarily characterized by the metabolism of carbohydrate and amino acid. The pyruvate kinase and 1-phosphofructokinase were critical in promoting lactic acid fermentation. A greater (p < 0.01) abundance of the “potentially pathogenic” label was noticed in the bacterial communities of ensiled IR than fresh IR. Altogether, the findings indicated that the high-moisture IR silage exhibited good ensiling characteristics, but the potential for microbial contamination and pathogens still remained after ensiling.
Read full abstract