ABSTRACT The Tidal Disruption Event (TDE) AT 2018hyz exhibited a delayed radio flare almost three years after the stellar disruption. Here, we report new radio observations of the TDE AT 2018hyz with the AMI-LA and ATCA spanning from a month to more than four years after the optical discovery and 200 d since the last reported radio observation. We detected no radio emission from 30–220 d after the optical discovery in our observations at 15.5 GHz down to a 3σ level of <0.14 mJy. The fast-rising, delayed radio flare is observed in our radio data set and continues to rise almost ∼1580 d after the optical discovery. We find that the delayed radio emission, first detected 972 d after optical discovery, evolves as t4.2 ± 0.9, at 15.5 GHz. Here, we present an off-axis jet model that can explain the full set of radio observations. In the context of this model, we require a powerful narrow jet with an isotropic equivalent kinetic energy Ek, iso ∼ 1055 erg, an opening angle of ∼7°, and a relatively large viewing angle of ∼42°, launched at the time of the stellar disruption. Within our framework, we find that the minimal collimated energy possible for an off-axis jet from AT 2018hyz is Ek ≥ 3 × 1052 erg. Finally, we provide predictions based on our model for the light curve turnover time, and for the proper motion of the radio emitting source.
Read full abstract