Starch oleate (degree of substitution = 2.2) films were cast and crosslinked in the presence of air using UV curing (UVC) or heat curing (HC). A commercial photoinitiator (CPI, Irgacure 184) and a natural photoinitiator (NPI, a mixture of biobased 3-hydroxyflavone and n-phenylglycine) were used for UVC. No initiator was used during HC. Isothermal gravimetric analyses, Fourier Transform Infrared (FTIR) measurements, and gel content measurements revealed that all three methods were effective in crosslinking, with HC being the most efficient. All methods increased the maximum strengths of film, with HC causing the largest increase (from 4.14 to 7.37 MPa). This is consistent with a higher degree of crosslinking occurring with HC. DSC analyses showed that the Tg signal flattened as film crosslink densities increased, even disappearing in the case of HC and UVC with CPI. Thermal gravimetric analyses (TGA) indicated that films cured with NPI were least affected by degradation during curing. These results suggest that cured starch oleate films could be suitable for replacing the fossil-fuel-derived plastics currently used in mulch films or packaging applications.
Read full abstract