Isoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound -COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl-functionalized MOFs capable of encompassing chemically disparate metal ions. Here, with the simultaneous introduction of carboxyl functionalization and pore space partition, a family of carboxyl-functionalized materials is developed in diverse compositions from homometallic Cr3+ and Ni2+ to heterometallic Co2+/V3+, Ni2+/V3+, Co2+/In3+, Co2+/Ni2+. Cr-MOFs remain highly crystalline in boiling water. Unprecedentedly, one Cr-MOF can withstand the treatment cycle with 10m NaOH and 12m HCl, allowing reversible inter-conversion between unbound -COOH acid form and -COO- base form. These materials exhibit excellent sorption properties such as high uptake capacity for CO2 (100.2 cm3g-1) and hydrocarbon gases (e.g., 142.1 cm3g-1 for C2H2, 110.5 cm3g-1 for C2H4) at 1 bar and 298K, high benzene/cyclohexane selectivity (up to ≈40), and promising separation performance for gas mixtures such as C2H2/CO2 and C2H2/C2H4.