Excessive amounts of air can enter the lungs and cause air embolism (AE)-induced acute lung injury (ALI). Pulmonary AE can occur during diving, aviation, and iatrogenic invasive procedures. AE-induced lung injury presents with severe hypoxia, pulmonary hypertension, microvascular hyper-permeability, and severe inflammatory responses. Pulmonary AE-induced ALI is a serious complication resulting in significant morbidity and mortality. Surfactant is abundant in the lungs and its function is to lower surface tension. Earlier studies have explored the beneficial effects of surfactant in ALI; however, none have investigated the role of surfactant in pulmonary AE-induced ALI. Therefore, we conducted this study to determine the effects of surfactant in pulmonary AE-induced ALI. Isolated-perfused rat lungs were used as a model of pulmonary AE. The animals were divided into four groups (n = 6 per group): sham, air embolism (AE), AE + surfactant (0.5 mg/kg), and AE+ surfactant (1 mg/kg). Surfactant pretreatment was administered before the induction of pulmonary AE. Pulmonary AE was induced by the infusion of 0.7 cc air through a pulmonary artery catheter. After induction of air, pulmonary AE was presented with pulmonary edema, pulmonary microvascular hyper-permeability, and lung inflammation with neutrophilic sequestration. Activation of NF-κB was observed, along with increased expression of pro-inflammatory cytokines, and Na-K-Cl cotransporter isoform 1 (NKCC1). Surfactant suppressed the activation of NF-κB and decreased the expression of pro-inflammatory cytokines and NKCC1, thereby attenuating AE-induced lung injury. Therefore, AE-induced ALI presented with pulmonary edema, microvascular hyper-permeability, and lung inflammation. Surfactant suppressed the expressions of NF-κB, pro-inflammatory cytokines, and NKCC1, thereby attenuating AE-induced lung injury.
Read full abstract