We consider the standard first passage percolation model on Zd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {Z}}^ d$$\\end{document} with a distribution G taking two values 0<a<b\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0<a<b$$\\end{document}. We study the maximal flow through the cylinder [0,n]d-1×[0,hn]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[0,n]^ {d-1}\ imes [0,hn]$$\\end{document} between its top and bottom as well as its associated minimal surface(s). We prove that the variance of the maximal flow is superconcentrated, i.e. in O(nd-1logn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$O(\\frac{n^{d-1}}{\\log n})$$\\end{document}, for h≥h0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h\\ge h_0$$\\end{document} (for a large enough constant h0=h0(a,b)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h_0=h_0(a,b)$$\\end{document}). Equivalently, we obtain that the ground state energy of a disordered Ising ferromagnet in a cylinder [0,n]d-1×[0,hn]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[0,n]^ {d-1}\ imes [0,hn]$$\\end{document} is superconcentrated when opposite boundary conditions are applied at the top and bottom faces and for a large enough constant h≥h0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h\\ge h_0$$\\end{document} (which depends on the law of the coupling constants). Our proof is inspired by the proof of Benjamini–Kalai–Schramm (Ann Probab 31:1970–1978, 2003). Yet, one major difficulty in this setting is to control the influence of the edges since the averaging trick used in Benjamini et al. (Ann Probab 31:1970–1978, 2003) fails for surfaces. Of independent interest, we prove that minimal surfaces (in the present discrete setting) cannot have long thin chimneys.
Read full abstract