We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.
Read full abstract