Analyzing irrigation patterns to promote efficient water use in urban areas is challenging. Analysis of irrigation by remote sensing (AIRS) combines multispectral aerial imagery, evapotranspiration data, and ground-truth measurements to overcome these challenges. We demonstrate AIRS on eight neighborhoods in Weber County, Utah, using 0.6 m National Agriculture Imagery Program (NAIP) and 0.07 m drone imagery, reference evapotranspiration (ET), and water use records. We calculate the difference between the actual and hypothetical water required for each parcel and compare water use over three time periods (2018, 2021, and 2023). We find that the quantity of overwatering, as well as the number of customers overwatering, is decreasing over time. AIRS provides repeatable estimates of irrigated area and irrigation demand that allow water utilities to track water user habits and landscape changes over time and, when controlling for other variables, see if water conservation efforts are effective. In terms of image analysis, we find that (1) both NAIP and drone imagery are sufficient to measure irrigated area in urban settings, (2) the selection of a threshold value for the normalized difference vegetation index (NDVI) becomes less critical for higher-resolution imagery, and (3) irrigated area measurement can be enhanced by combining NDVI with other tools such as building footprint extraction, object classification, and deep learning.