The microbiome of a sampled habitat often consists of microbial communities from various sources, including potential contaminants. Microbial source tracking (MST) can be used to discern the contribution of each source to the observed microbiome data, thus enabling the identification and tracking of microbial communities within a sample. Therefore, MST has various applications, from monitoring microbial contamination in clinical labs to tracing the source of pollution in environmental samples. Despite promising results in MST development, there is still room for improvement, particularly for applications where precise quantification of each source's contribution is critical. In this study, we introduce a novel tool called SourceID-NMF towards more precise microbial source tracking. SourceID-NMF utilizes a non-negative matrix factorization (NMF) algorithm to trace the microbial sources contributing to a target sample. By leveraging the taxa abundance in both available sources and the target sample, SourceID-NMF estimates the proportion of available sources present in the target sample. To evaluate the performance of SourceID-NMF, we conducted a series of benchmarking experiments using simulated and real data. The simulated experiments mimic realistic yet challenging scenarios for identifying highly similar sources, irrelevant sources, unknown sources, low abundance sources, and noise sources. The results demonstrate the superior accuracy of SourceID-NMF over existing methods. Particularly, SourceID-NMF accurately estimated the proportion of irrelevant and unknown sources while other tools either over- or under-estimated them. In addition, the noise sources experiment also demonstrated the robustness of SourceID-NMF for MST. SourceID-NMF is available online at https://github.com/ZiyiHuang0708/SourceID-NMF.
Read full abstract