We present a technique for previewing large-scale irregular volume datasets using an improved particle-based volume rendering (PBVR) technique. Volume rendering of irregular grid volume data is considerably more complicated than that of regular grid data, since the sampling and compositing processes, which must be done in visibility order, are not straightforward. In our original PBVR, rendering involves generating and projecting sub-pixel-size, opaque, and emissive particles without visibility ordering. To make it easier to preview large-scale irregular volume datasets, we improve our original PBVR technique in two respects. The first is that we exploit its scalability to develop a cell-by-cell particle generation technique. The second is that we reduce the memory cost of the frame buffer using a pixel-by-pixel superimposing technique. To measure the effectiveness of our proposed method, we apply it to huge irregular volume datasets composed of 71 mega hexahedral cells or 1 giga tetrahedral cells.
Read full abstract