Streak artifacts induced by irregular arm positioning have been an issue in diagnosing the abdomen. To illustrate the risk of misdiagnosis in abdominal computed tomography (CT) of patients with irregular arm positioning through a case-by-case evaluation and to test if it can be solved by the artificial intelligence iterative reconstruction (AIIR) algorithm. By reviewing 5220 cases of chest and thoracoabdominal CT, 64 patients with irregular arm positioning were enrolled, whose image data were reconstructed using AIIR in addition to routine hybrid iterative reconstruction (HIR). Lesion detection for livers, spleens, kidneys, gallbladders, and pancreas on AIIR images, performed by two radiologists, was compared with those on HIR images. Discrepancies arising from AIIR images included both cases with additional abnormalities and those with corrections made on previous detections. For cases with discrepancies, artifact scores for organs where discrepancies were found, and contrast-to-noise ratios (CNRs) of cysts with discrepancies were compared between two image sets. Additional abnormalities were detected for 15 cases: additional liver cirrhosis (n=2); additional gallbladder stone (n=1); additional cholecystitis (n=1), additional spleen nodule (n=1); additional kidney cysts (n=8); additional liver cysts (3); and additional spleen cyst (n=1). A spleen contusion was corrected for one case. All involved artifact scores were improved on AIIR images. CNRs of involved liver, kidney, and spleen cysts were improved by up to 539.7%, 538.5%, and 245.5%, respectively. Irregular arm positioning may induce a variety of misdiagnoses in abdominal CT, which is almost totally avoidable by the AIIR algorithm.