Catastrophic structural failure caused by fatigue damage under cyclic loads can be avoided by identifying critical locations of the damage initiation and the fatigue life during the design stage. Peridynamic (PD) theory defines structure as a collection of material points with non-local bond interactions where the structural discontinuity due to fatigue represented by instantaneous bond breakage is estimated through cumulative decrement of the bond’s life at each load cycle. In this work, we model a reference jacket presented under the Offshore Code Comparison Collaboration Continuation project (OC4) through peridynamic beam formulation. Initially, the static deformations of the beam and deformations of the OC4 jacket under static, harmonic, and irregular point loads are validated with ABAQUS results in all six degrees of freedom. Thereby, the PD fatigue parameters of the jacket’s steel material are calibrated from the experimental data of the corresponding material with a trial simulation for fatigue damage analysis. Later, different load cases from regular waves interacting with the jacket are generated in the PD framework by adopting linear wave theory. Based on the PD cyclic energy release rate model, a comparative study of all load cases to identify critical damage locations with the failure load cycles for damage initiation and fracture is performed for the considered OC4 jacket.