Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the d-band center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 μmol h-1 with a selectivity of 94.5 %, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.